Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.874
Filtrar
1.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565016

RESUMEN

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Asunto(s)
Reactores Biológicos , Dicloruros de Etileno , Membranas Artificiales , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Dicloruros de Etileno/metabolismo , Petróleo/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos
2.
Chem Commun (Camb) ; 60(35): 4671-4674, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591695

RESUMEN

Hydrophobic membranes infused with mixed solvents including a low polar solvent and a specific solvent can efficiently separate analytes from blood upon applying a voltage. In contrast, membranes infused with a specific solvent alone show significantly reduced separation efficiencies for blood samples. Infusion of a low polar solvent is of importance for achieving antifouling ability of membranes for biological sample pretreatment.


Asunto(s)
Incrustaciones Biológicas , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Solventes , Solventes/química , Incrustaciones Biológicas/prevención & control , Humanos , Animales
3.
Anal Methods ; 16(16): 2585-2596, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38606467

RESUMEN

Excessive dietary polyamines (PAs), including putrescine (PUT), spermine (SPM), and spermidine (SPD), have become a worldwide concern due to their carcinogenicity and reduced shelf life. A modern miniaturized on-chip electromembrane extraction (EME) has been applied to extract these compounds from chicken breast samples. This method is based fundamentally on ionic compounds' electrostatic attraction, diffusion, and solubility in the acceptor phase. The chemical structure of polyamines enables their efficient extraction using an electric driving force on a microchip device. HCl solution (0.1 mol L-1) was applied as an aqueous acceptor solvent. Dispersive liquid-liquid microextraction was performed after EME to facilitate joining three-phase EME to GC-MS and improve the merit figures. The total ranges of 3.77-7.89 µg g-1, 3.48-7.02 µg g-1, and 0.78-2.20 µg g-1 were acquired as PUT, SPM and SPD concentrations in chicken breast, respectively. The results demonstrate that the level of PAs in fresh chicken breast samples is not concerning, but it may reduce the quality of chicken meat over time. This novel analytical technique has several advantages: high recovery, substantial quickness, remarkable selectivity, and good enrichment factors. This emerging method could be generalized to other studies to analyze different foodstuffs.


Asunto(s)
Pollos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Líquida , Poliaminas , Animales , Microextracción en Fase Líquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Poliaminas/química , Poliaminas/análisis , Dispositivos Laboratorio en un Chip , Carne/análisis , Membranas Artificiales
4.
J Chromatogr A ; 1722: 464904, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38626539

RESUMEN

A continuously regenerated cationic impurity removal device (CR-CRD) has been fabricated and applied for ion chromatography (IC). The removal of cationic impurities is realized by electrodialytically replacing the cationic impurities with hydronium ions. The device is configured in a sandwich structure and the central eluent channel is respectively isolated from both electrodes by stacked cation exchange membranes and a bipolar membrane (BPM) plus stacked anion exchange membranes. The eluent channel is packed with cation exchange resins in hydronium form and their continuous regeneration can be achieved by electrodialysis. A desirable feature of the device is gas-free, and no degasser is required. It showed sufficient ability to remove cationic impurities, as indicated by > 99.9 % removal of 10 mL of 1 mM LiOH solution injected (∼10 µmol) or continuous removal of 1 mM LiOH solution at the flow rate of 1 mL/min (1 µmol/min). A useful application was for sample pretreatment in nuclear power industry, by eliminating strong matrix interference of the sample containing LiOH (1 mM) and boric acid (2000 mg/L) with trace anion analysis.


Asunto(s)
Cationes , Cromatografía por Intercambio Iónico/métodos , Cromatografía por Intercambio Iónico/instrumentación , Cationes/química , Membranas Artificiales , Resinas de Intercambio de Catión/química , Diseño de Equipo
5.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636150

RESUMEN

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Asunto(s)
Quitosano , Cromatografía de Afinidad , Histidina , Membranas Artificiales , Níquel , Níquel/química , Quitosano/química , Cromatografía de Afinidad/métodos , Histidina/química , Porosidad , Adsorción , Proteínas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
6.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38570313

RESUMEN

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Asunto(s)
Canales Iónicos , Metales , Nitritos , Elementos de Transición , Iones , Cationes Bivalentes , Membranas Artificiales , Concentración de Iones de Hidrógeno
7.
Water Sci Technol ; 89(7): 1831-1845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619906

RESUMEN

In this study, further treatment of coking wastewater treated in anoxic-oxic-membrane bioreactor (A2O-MBR) was investigated to meet the standards of the ministry by means of nanofiltration (NF) (with two different membranes and different pressures), microfiltration -powder activated carbon (MF-PAC) hybrid system and NF-PAC (with two different membranes and five different PAC concentrations) hybrid system. In addition to the parameters determined by the ministry, other parameters such as ammonium, thiocyanate (SCN-), hydrogen cyanide (HCN), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), color were also examined to evaluate the flux performance and treatment efficiency of the hybrid processes. According to the results, chemical oxygen demand (COD) in the NF process, COD and total cyanide (T-CN) in the MF-PAC process could not meet the discharge standards. As for the NF-PAC hybrid system, XN45 membrane met the discharge standards in all parameters (COD = 96±1.88 mg/L, T-CN =<0,02 mg/L, phenol =<0.05 mg/L), with a recovery rate of 78% at 0.5 g/L PAC concentration.


Asunto(s)
Coque , Purificación del Agua , Aguas Residuales , Carbón Orgánico , Polvos , Purificación del Agua/métodos , Membranas Artificiales , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
8.
Chemosphere ; 355: 141834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565376

RESUMEN

Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.


Asunto(s)
Ultrafiltración , Purificación del Agua , Gas Natural , Peróxido de Hidrógeno , Membranas Artificiales , Purificación del Agua/métodos , Electrocoagulación
9.
Protein Sci ; 33(5): e4987, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607188

RESUMEN

High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.


Asunto(s)
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/genética , Membranas Artificiales , Colesterol/metabolismo , Fosfolípidos
10.
Anal Chem ; 96(16): 6347-6355, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607313

RESUMEN

The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Glicosilación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/análisis , Humanos , Polisacáridos/análisis , Polisacáridos/química , Cromatografía Liquida , Pepsina A/metabolismo , Pepsina A/química , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Animales , Membranas Artificiales
11.
Sci Total Environ ; 927: 172141, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580119

RESUMEN

Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.


Asunto(s)
Membranas Artificiales , Microalgas , Eliminación de Residuos Líquidos , Aguas Residuales , Microalgas/fisiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Biopelículas , Bacterias , Reactores Biológicos , Purificación del Agua/métodos
12.
J Hazard Mater ; 470: 134195, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581872

RESUMEN

This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.


Asunto(s)
Biopelículas , Reactores Biológicos , Cromatos , Membranas Artificiales , Cromatos/metabolismo , Fermentación , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Bacterias/genética , Hidrógeno/metabolismo , Gases/metabolismo , Biodegradación Ambiental
13.
Biochem Biophys Res Commun ; 709: 149806, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38579619

RESUMEN

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Asunto(s)
Antineoplásicos , Membrana Dobles de Lípidos , Rastreo Diferencial de Calorimetría , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Membranas Artificiales , Liposomas/química
14.
J Environ Manage ; 357: 120824, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583379

RESUMEN

Extending the solids retention time (SRT) has been demonstrated to mitigate membrane biofouling. Nevertheless, it remains an intriguing question whether the compact and water flushing resistant mesh biofilms developed at short SRT can undergo biodegradation and be removed with extended SRT. In present study, the bio-fouled mesh filter in the 10d-SRT dynamic membrane bioreactor (DMBR), with mesh surfaces and pores covered by compact and water flushing resistant biofilms exhibiting low water permeability, was reused in the 40d-SRT DMBR without any cleanings. After being reused at 40d-SRT, its flux driven by gravity occurred from the 10th day and recovered to a regular level of 36.7 L m-2·h-1 on the 27th day. Both scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) analyses indicated that the compact mesh biofilms formed at10d-SRT biodegraded and were removed at 40d-SRT, with the residual biofilms becoming removable by water flushing. As a result, the hydraulic resistance of the bio-fouled mesh filter decreased from 4.36 × 108 to 6.97 × 107 m-1, and its flux fully recovered. The protein and polysaccharides densities in mesh-biofilms decreased from 24.4 to 9.7 mg/cm2 and from 10.7 to 0.10 mg/cm2, respectively, which probably have contributed to the disappearance of compact biofilms and the decrease in adhesion. Furthermore, the sludge and mesh-biofilms in the 40d-SRT reactor contained a higher relative abundance of dominant quorum quenching bacteria, such as Rhizobium (3.52% and 1.35%), compared to those in the 10d-SRT sludge (0.096%) and mesh biofilms (0.79%), which might have been linked to a decline in extracellular polymeric substances and, consequently, the biodegradation and disappearance of compact biofilms.


Asunto(s)
Incrustaciones Biológicas , Aguas del Alcantarillado , Biopelículas , Incrustaciones Biológicas/prevención & control , Filtración , Reactores Biológicos/microbiología , Membranas Artificiales
15.
Ren Fail ; 46(1): 2338217, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38584147

RESUMEN

BACKGROUND: Elderly hemodialysis (HD) patients have a high risk of death. The effect of different types of HD membranes on survival is still controversial. The purpose of this study was to determine the relationship between the use of low-flux or high-flux membranes and all-cause and cardiovascular mortality in elderly hemodialysis patients. METHODS: This was a retrospective clinical study involving maintenance hemodialysis patients which were categorized into low-flux and high-flux groups according to the dialyzer they were using. Propensity score matching was used to balance the baseline data of the two groups. Survival rates were compared between the two groups, and the risk factors for death were analyzed by multivariate Cox regression. RESULTS: Kaplan-Meier survival analysis revealed no significant difference in all-cause mortality between the low-flux group and the high-flux group (log-rank test, p = 0.559). Cardiovascular mortality was significantly greater in the low-flux group than in the high-flux group (log-rank test, p = 0.049). After adjustment through three different multivariate models, we detected no significant difference in all-cause mortality. Patients in the high-flux group had a lower risk of cardiovascular death than did those in the low-flux group (HR = 0.79, 95% CI, 0.54-1.16, p = 0.222; HR = 0.58, 95% CI, 0.37-0.91, p = 0.019). CONCLUSIONS: High-flux hemodialysis was associated with a lower relative risk of cardiovascular mortality in elderly MHD patients. High-flux hemodialysis did not improve all-cause mortality rate. Differences in urea distribution volume, blood flow, and systemic differences in solute clearance by dialyzers were not further analyzed, which are the limitations of this study.


Asunto(s)
Enfermedades Cardiovasculares , Fallo Renal Crónico , Humanos , Anciano , Fallo Renal Crónico/complicaciones , Estudios Retrospectivos , Membranas Artificiales , Diálisis Renal/efectos adversos
16.
Environ Sci Pollut Res Int ; 31(16): 24584-24598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448772

RESUMEN

Thin-film nanocomposite (TFN) forward osmosis (FO) membranes have attracted significant attention due to their potential for solving global water scarcity problems. In this study, we investigate the impact of titanium oxide (TiO2) and titanium oxide/reduced graphene (TiO2/rGO) additions on the performance of TFN-FO membranes, specifically focusing on water flux and reverse salt diffusion. Membranes with varying concentrations of TiO2 and TiO2/rGO were fabricated as interfacial polymerizing M-phenylenediamine (MPD) and benzenetricarbonyl tricholoride (TMC) monomers with TiO2 and its reduced graphene composites (TiO2/rGO). The TMC solution was supplemented with TiO2 and its reduced graphene composites (TiO2/rGO) to enhance FO performance and reverse solute flux. All MPD/TMC polyamide membranes are characterized using various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. The results demonstrate that incorporating TiO2/rGO into the membrane thin layer improves water flux and reduces reverse salt diffusion. In contrast to the TFC membrane (10.24 L m-2h-1 and 6.53 g/m2 h), higher water flux and higher reverse solute flux were detected in the case of TiO2and TiO2/rGO-merged TFC skin membranes (18.81 and 24.52 L m-2h-1 and 2.74 and 2.15 g/m2 h, respectively). The effects of TiO2 and TiO2/rGO stacking on the skin membrane and the performance of TiO2 and TiO2/rGO skin membranes have been thoroughly studied. Additionally, being investigated is the impact of draw solution concentration.


Asunto(s)
Grafito , Nanocompuestos , Titanio , Agua , Membranas Artificiales , Ósmosis , Cloruro de Sodio , Cloruro de Sodio Dietético
17.
Pharm Res ; 41(4): 819-831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443630

RESUMEN

PURPOSE: Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS: Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS: According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION: In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratas , Animales , Microinyecciones , Inyecciones Intradérmicas , Sistemas de Liberación de Medicamentos/métodos , Agujas , Membranas Artificiales , Administración Cutánea
18.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551393

RESUMEN

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Asunto(s)
Incrustaciones Biológicas , Nanopartículas , Ósmosis , Nylons/química , Grabado y Grabaciones , Membranas Artificiales , Agua/química
19.
Biofouling ; 40(2): 153-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38450621

RESUMEN

Quorum quenching (QQ) by cell entrapping beads (CEBs) is known to inhibit biofouling by its biological and physical cleaning effect. Although there are better QQ media reported, due to the ease of fabrication of QQ-CEBs, this study focused on improving the quality of CEBs by comparing two distinct bead-making methods - polyvinyl alcohol-alginate (PVA-alginate) and phase inversion - and on finding the optimum concentration of QQ bacteria in the CEBs. The evaluation of PVA-alginate bead showed better uniformity, and higher mechanical and chemical strength in comparison with the phase inversion bead. Through the operations of two control membrane bioreactors (MBRs) (no bead, vacant bead) and four QQ-MBRs with different Rhodococcus sp. BH4 concentrations (2.5-15 mg cell ml-1) in PVA-alginate CEBs, the maximum QQ effect was observed by 5 mg ml-1 BH4 concentration beads. This implies that an optimum cell concentration of QQ-CEBs is crucial to economically improve MBR performance using QQ.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Incrustaciones Biológicas/prevención & control , Biopelículas , Membranas Artificiales , Bacterias , Alginatos , Reactores Biológicos/microbiología , Alcohol Polivinílico
20.
J Hazard Mater ; 469: 134093, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522199

RESUMEN

The inadequate understanding of the biofouling formation mechanism and the absence of effective control have inhibited the commercial application of membrane distillation (MD). In this study, an advanced oxidation process (AOP)/coagulation-coupled (Coag) membrane distillation system was proposed and exhibited the potential for MD ammonia recovery (recovery rate: 94.1%). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) components such as humic acid and tryptophan-like proteins were disrupted and degraded in the digestate. The curtailment and sterilizing efficiency of AOP on biofilm growth was also verified by optical coherence tomography (OCT) in situ real-time monitoring and confocal laser scanning microscopy (CLSM). Peroxymonosulfate (PMS) was activated to generate sulfate (SO4•-) and hydroxyl radicals (HO•), which altered the microbial community. After oxidative treatment, 16 S rRNA sequencing indicated that the dominant phylum of the microbial community evolved into Firmicutes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that free radicals produced by PMS could disrupt cells' signaling molecules and interactions. In conjunction with these analyses, the mechanisms of response to free radical attack by Gram-negative bacteria, Gram-positive bacteria, and fungi were revealed. This research provided new insights into the field of membrane fouling control for membrane technology resource recovery processes, broadening the impact of AOP applications on microbiological response and fate in the environment.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Amoníaco , Destilación , Membranas Artificiales , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...